Lattice points problem, equidistribution and ergodic theorems for certain arithmetic spheres

نویسندگان

چکیده

We establish an asymptotic formula for the number of lattice points in sets $$\begin{aligned} {\textbf{S}}_{h_1, h_2, h_3}(\lambda ): =\left\{ x\in {\mathbb {Z}}_+^3:\lfloor h_1(x_1)\rfloor +\lfloor h_2(x_2)\rfloor h_3(x_3)\rfloor =\lambda \right\} \quad \text {with}\quad \lambda \in {Z}}_+; \end{aligned}$$ where functions $$h_1, h_3$$ are constant multiples regularly varying form $$h(x):=x^c\ell _h(x)$$ , exponent $$c>1$$ (but close to 1) and a function $$\ell is taken from certain wide class slowly functions. Taking $$h_1(x)=h_2(x)=h_3(x)=x^c$$ we will also derive {\textbf{S}}_{c}^3(\lambda ) := \{x {Z}}^3 : \lfloor |x_1|^c \rfloor + |x_2|^c |x_3|^c = \} which can be thought as perturbation classical Waring problem three variables. use latter study, main results this paper, norm pointwise convergence ergodic averages \frac{1}{\#{\textbf{S}}_{c}^3(\lambda )}\sum _{n\in )}f(T_1^{n_1}T_2^{n_2}T_3^{n_3}x) {as}\quad \rightarrow \infty ; $$T_1, T_2, T_3:X\rightarrow X$$ commuting invertible measure-preserving transformations $$\sigma $$ -finite measure space $$(X, \nu )$$ any $$f\in L^p(X)$$ with $$p>\frac{11-4c}{11-7c}$$ . Finally, study equidistribution corresponding spheres $${\textbf{S}}_{c}^3(\lambda

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ergodic Theoretic Proof of Equidistribution of Hecke Points

Let G be a connected non-compact Q-simple real algebraic group defined over Q, that is, the identity component of the group of the real points of a connected Q-simple algebraic group which is R-isotropic. Let Γ ⊂ G(Q) be an arithmetic subgroup of G. As is well known, Γ has finite co-volume in G [BH]. Denote by μG the G-invariant Borel probability measure on Γ\G. Two subgroups Γ1 and Γ2 of G are...

متن کامل

Splines, lattice points, and (arithmetic) matroids

Let X be a (d × N)-matrix. We consider the variable polytope ΠX(u) = {w ≥ 0 : Xw = u}. It is known that the function TX that assigns to a parameter u ∈ R the volume of the polytope ΠX(u) is piecewise polynomial. Formulas of Khovanskii-Pukhlikov and Brion-Vergne imply that the number of lattice points in ΠX(u) can be obtained by applying a certain differential operator to the function TX . In th...

متن کامل

Lattice Points in High-Dimensional Spheres

A general principle, dating back to Gauss, that is widely used in estimating the number of integer lattice points in nice sets S in R is that this number equals the volume of S with a small error term [4,5,13]. This approach is very useful, and can be proved to be rigorous, for example, if one considers the number of lattice points in sets rT, where the dimension n is fixed, T is a given nice s...

متن کامل

Equidistribution and Integral Points for Drinfeld Modules

We prove that the local height of a point on a Drinfeld module can be computed by averaging the logarithm of the distance to that point over the torsion points of the module. This gives rise to a Drinfeld module analog of a weak version of Siegel’s integral points theorem over number fields and to an analog of a theorem of Schinzel’s regarding the order of a point modulo certain primes.

متن کامل

Ergodic Theorems

Every one of the important strong limit theorems that we have seen thus far – the strong law of large numbers, the martingale convergence theorem, and the ergodic theorem – has relied in a crucial way on a maximal inequality. This is no accident: it can in fact be shown that a maximal inequality is a necessary condition for an almost everywhere convergence theorem. We will refrain from carrying...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 2023

ISSN: ['1432-1807', '0025-5831']

DOI: https://doi.org/10.1007/s00208-022-02557-8